\(\int \frac {(A+C \cos ^2(c+d x)) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\) [1185]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 190 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(3 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(5 A+3 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \]

[Out]

1/3*(5*A+3*C)*sec(d*x+c)^(3/2)*sin(d*x+c)/a/d-(A+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos(d*x+c))-(3*A+C)*sin
(d*x+c)*sec(d*x+c)^(1/2)/a/d+(3*A+C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2
*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d+1/3*(5*A+3*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*
c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))*cos(d*x+c)^(1/2)*sec(d*x+c)^(1/2)/a/d

Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 190, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.171, Rules used = {4306, 3121, 2827, 2716, 2720, 2719} \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {(5 A+3 C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{3 a d}-\frac {(3 A+C) \sin (c+d x) \sqrt {\sec (c+d x)}}{a d}-\frac {(A+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {(3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a d} \]

[In]

Int[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x]),x]

[Out]

((3*A + C)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(a*d) + ((5*A + 3*C)*Sqrt[Cos[c +
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]])/(3*a*d) - ((3*A + C)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(a*d
) + ((5*A + 3*C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(3*a*d) - ((A + C)*Sec[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a +
a*Cos[c + d*x]))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3121

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Dist[1/(b*(b*c - a*d)*(2*m + 1)), Int[(a + b*Sin[e + f*x])^(m + 1)
*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2
) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]

Rule 4306

Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {A+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+a \cos (c+d x))} \, dx \\ & = -\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {1}{2} a (5 A+3 C)-\frac {1}{2} a (3 A+C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{a^2} \\ & = -\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac {\left ((3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx}{2 a}+\frac {\left ((5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{2 a} \\ & = -\frac {(3 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(5 A+3 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}+\frac {\left ((3 A+C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 a}+\frac {\left ((5 A+3 C) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 a} \\ & = \frac {(3 A+C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(5 A+3 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(3 A+C) \sqrt {\sec (c+d x)} \sin (c+d x)}{a d}+\frac {(5 A+3 C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{3 a d}-\frac {(A+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.00 (sec) , antiderivative size = 651, normalized size of antiderivative = 3.43 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=-\frac {A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{\sqrt {2} d (a+a \cos (c+d x))}-\frac {C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \csc \left (\frac {c}{2}\right ) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sec \left (\frac {c}{2}\right )}{3 \sqrt {2} d (a+a \cos (c+d x))}+\frac {5 A \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{3 d (a+a \cos (c+d x))}+\frac {C \cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\cos (c+d x)} \csc \left (\frac {c}{2}\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sec \left (\frac {c}{2}\right ) \sqrt {\sec (c+d x)} \sin (c)}{d (a+a \cos (c+d x))}+\frac {\cos ^2\left (\frac {c}{2}+\frac {d x}{2}\right ) \sqrt {\sec (c+d x)} \left (-\frac {(3 A+C) \cos (d x) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right )}{d}+\frac {2 \sec \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (A \sin \left (\frac {d x}{2}\right )+C \sin \left (\frac {d x}{2}\right )\right )}{d}+\frac {4 A \sec (c) \sec (c+d x) \sin (d x)}{3 d}+\frac {2 (2 A+5 A \cos (c)+3 C \cos (c)) \sec (c) \tan \left (\frac {c}{2}\right )}{3 d}\right )}{a+a \cos (c+d x)} \]

[In]

Integrate[((A + C*Cos[c + d*x]^2)*Sec[c + d*x]^(5/2))/(a + a*Cos[c + d*x]),x]

[Out]

-((A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^2*Csc[c/
2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((
2*I)*(c + d*x))])*Sec[c/2])/(Sqrt[2]*d*E^(I*d*x)*(a + a*Cos[c + d*x]))) - (C*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I
)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^2*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d*x))] +
 E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sec[c/2])/(3*Sqrt[2]
*d*E^(I*d*x)*(a + a*Cos[c + d*x])) + (5*A*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)
/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])) + (C*Cos[c/2 + (d*x)/2]^2*Sqrt[Cos[c + d
*x]]*Csc[c/2]*EllipticF[(c + d*x)/2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(d*(a + a*Cos[c + d*x])) + (Cos[c/
2 + (d*x)/2]^2*Sqrt[Sec[c + d*x]]*(-(((3*A + C)*Cos[d*x]*Csc[c/2]*Sec[c/2])/d) + (2*Sec[c/2]*Sec[c/2 + (d*x)/2
]*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/d + (4*A*Sec[c]*Sec[c + d*x]*Sin[d*x])/(3*d) + (2*(2*A + 5*A*Cos[c] + 3*C
*Cos[c])*Sec[c]*Tan[c/2])/(3*d)))/(a + a*Cos[c + d*x])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(458\) vs. \(2(224)=448\).

Time = 48.78 (sec) , antiderivative size = 459, normalized size of antiderivative = 2.42

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {\left (A +C \right ) \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}-\frac {2 A \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}+2 A \left (-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{6 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )\right )}{a \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-1+2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, d}\) \(459\)

[In]

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x,method=_RETURNVERBOSE)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)/a*((A+C)*(cos(1/2*d*x+1/2*c)*(2*sin(1/2*d*x+1/2*c)^
2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^
(1/2)))-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1
/2*c)^2)^(1/2)-2*A/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*A*(-1/6*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+
1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2
)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))))/sin(1/2*d*x+1/2
*c)/(-1+2*cos(1/2*d*x+1/2*c)^2)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 302, normalized size of antiderivative = 1.59 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\frac {{\left (\sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-5 i \, A - 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (5 i \, A + 3 i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, {\left (\sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (-3 i \, A - i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, {\left (\sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + \sqrt {2} {\left (3 i \, A + i \, C\right )} \cos \left (d x + c\right )\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (3 \, {\left (3 \, A + C\right )} \cos \left (d x + c\right )^{2} + 4 \, A \cos \left (d x + c\right ) - 2 \, A\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right )^{2} + a d \cos \left (d x + c\right )\right )}} \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

1/6*((sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(-5*I*A - 3*I*C)*cos(d*x + c))*weierstrassPInverse(-4,
 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(5*I*A + 3*I*C)*cos(d*x + c)^2 + sqrt(2)*(5*I*A + 3*I*C)*cos(d*x
 + c))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*(sqrt(2)*(-3*I*A - I*C)*cos(d*x + c)^2 +
sqrt(2)*(-3*I*A - I*C)*cos(d*x + c))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*
x + c))) - 3*(sqrt(2)*(3*I*A + I*C)*cos(d*x + c)^2 + sqrt(2)*(3*I*A + I*C)*cos(d*x + c))*weierstrassZeta(-4, 0
, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(3*(3*A + C)*cos(d*x + c)^2 + 4*A*cos(d*x + c
) - 2*A)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c)^2 + a*d*cos(d*x + c))

Sympy [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(5/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sec \left (d x + c\right )^{\frac {5}{2}}}{a \cos \left (d x + c\right ) + a} \,d x } \]

[In]

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(5/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*sec(d*x + c)^(5/2)/(a*cos(d*x + c) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sec ^{\frac {5}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{a+a\,\cos \left (c+d\,x\right )} \,d x \]

[In]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x)),x)

[Out]

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(5/2))/(a + a*cos(c + d*x)), x)